k-Center Problems

Joey Durham

Graphs, Combinatorics and Convex Optimization Reading Group Summer 2008

Outline

- General problem definition
- Several specific examples
 - k-Center, k-Means, k-Mediod
- Approximation methods
- Other methods
 - Lloyd algorithm
 - Annealing
- Summary of properties

General k-Center Problem

Image from www.graph-magics.com

• Given:

- *n* in points in a vector space or a complete graph
- Distance function satisfying the triangle inequality
- Find k "centroids" to minimize some measure of cluster size
- NP-hard

Applications

- Data clustering
- Statistical analysis
- Deployment
- Task allocation
- Image classification
- Facility location

Variations on k-Center

- Centroids
 - Member of data set
 - Any point in vector space
- Cluster measures
 - Maximum distance => minimize worst case
 - Sum of distances => minimize expected distance
 - Sum of square distances => minimize variance
- Vertex weights
- Added centroid cost
 - Facility location problem

k-Means Clustering

Image from www.mathworks.com

- Vector space, Euclidean distances
- Minimize intra-cluster variance
- Centroids NOT in data set
 - k-medoids: centroids in set
- The most famous: 21,000+ hits on Google Scholar
- Often used in data clustering/statistics
- Resources:
 - MacQueen (1967): "Some Methods for classification and Analysis of Multivariate Observations";
 - http://www.autonlab.org/tutorials/kmeans.html

Standard k-Center

- Complete graph, edge costs satisfy tri. ineq.
- Minimize worst case distance of vertex to centroid
 - Centroid in data set
- Resources: Vazirani (2003), Approximation Alogrithms

2-Approximation Algorithm

- 1) Order all edges e_i by cost
- 2) Construct graphs G_i containing all edges up to e_i
- 3) Construct square graphs G_i^2
- 4) Compute maximal independent set M_i of G_i^2
- 5) Find smallest i s.t. $|M_i| \le k$, say j
- 6) Return M_j

- Best possible polynomial time approximation: 2
- At least O(n³)
- Resources: Vazirani (2003), Approximation Alogrithms

2-Approximation Algorithm

- 1) Order all edges e_i by cost
- 2) Construct graphs G_i containing all edges up to e_i
- 3) Construct square graphs G_i^2
- 4) Compute maximal independent set M_i of G_i^2
- 5) Find smallest i s.t. $|M_i| \le k$, say j
- 6) Return M_j

 Square graph contains a one-hop connection wherever base graph had a one- or two-hop connection

2-Approximation Algorithm

- 1) Order all edges e_i by cost
- 2) Construct graphs G_i containing all edges up to e_i
- 3) Construct square graphs G_i^2
- 4) Compute maximal independent set M_i of G_i^2
- 5) Find smallest i s.t. $|M_i| \le k$, say j
- 6) Return M_j

• Maximal independent set

- A set S such that every edge of the graph has at least one endpoint not in S and every vertex not in S has at least one neighbor in S
- aka independent dominating set

Image from en.wikipedia.org

Lloyd algorithm

- 1) Pick initial centroids
- 2) Given centroids, compute clusters
- 3) Given clusters, compute new centroids
- 4) Repeat 2 & 3 until
 "convergence"
 (centroids don't
 move very much)

- Most commonly used heuristic solver
 - Nearly synonymous with kmeans
 - aka Voronoi iteration
 - Over 2,500 hits on G scholar
- Converges quickly to a good approximation in practice
 - Num iterations often << *n*
- Many applications
- Poor theoretical bounds

Lloyd algorithm

- 1) Pick initial centroids
- 2) Given centroids, compute clusters
- 3) Given clusters, compute new centroids
- 4) Repeat 2 & 3 until "convergence" (centroids don't move very much)

- Bad bounds
 - Time: super-polynomial in n
 - Approximation: can get stuck in local minimum
- "Seeding" initial centroids very important
 - Many complex methods for picking initial centroids
- Resources:
 - Lloyd (1957), "Least squares quantization in PCM"
 - Arthur & Vassilvitskii (2006), "How Slow is the kmeans Method?"
 - Arthur & Vassilvitskii (2007), "k-means++ The Advantages of Careful Seeding"

Simulated Annealing

- Lloyd algorithm with added randomness
 - "Temperature" *T* controls level of randomness
 - At high temperature, bypasses local minima
 - *T* is decreased on a schedule
 - Schedule affects result
 - Ideal cooling rate cannot be pre-computed
- Resources:
 - Kirkpatrick, Gelatt and Vecchi (1983),
 "Optimization by Simulated Annealing"

Images from en.wikipedia.org

Deterministic Annealing

- Not stochastic!
 - Fractional ownership of vertices based on "temperature" T
- *T* controls centroid greed
 - At T = inf, every centroid claims every vertex equally
 - At T = 0, like Lloyd
- Resources:
 - Rose (1998), "Deterministic annealing for clustering, ..."

Deterministic Annealing

- Like S.A., at high *T* D.A. bypasses local minima
 - Without randomness
- Still requires a temperature schedule
 - Again, determining an ideal schedule is complex
 - Depends on topography

Summary: k-Center Variations

	k-center	k-means	k-medoids
Datapoints in:	Graph	Cont. space	Cont. space
Centroids	In set	Not in set	In set
Distance norms	Max or 1	2	2

Summary: Solvers

	Approx. alg.	Lloyd alg.	Simulated Annealing	Deterministic Annealing
Approx. factor	2	?	?	?
Running time	Long	Short to very long	(# iter)*(lloyd)	(# iter)*(lloyd)
Stuck in local min	NA	Yes	No with good T schedule	No with good T schedule
Seeding importance	NA	High	Low	Low