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 Several specific examples

 k-Center, k-Means, k-Mediod
 Approximation methods
 Other methods

 Lloyd algorithm
 Annealing

 Summary of properties
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General k-Center Problem
 Given:

 n in points in a vector space 
or a complete graph

 Distance function satisfying 
the triangle inequality

 Find k “centroids” to 
minimize some measure 
of cluster size

 NP-hardImage from www.graph-magics.com
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Applications

 Data clustering
 Statistical analysis
 Deployment
 Task allocation
 Image classification
 Facility location

Image from www.spatialanalysisonline.com
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Variations on k-Center

 Centroids
 Member of data set
 Any point in vector space

 Cluster measures
 Maximum distance => minimize worst case
 Sum of distances => minimize expected distance
 Sum of square distances => minimize variance

 Vertex weights
 Added centroid cost

 Facility location problem
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k-Means Clustering

 Vector space, Euclidean 
distances

 Minimize intra-cluster variance
 Centroids NOT in data set

 k-medoids: centroids in set
 The most famous: 21,000+ hits 

on Google Scholar
 Often used in data 

clustering/statistics
 Resources:  

 MacQueen (1967): "Some Methods for 
classification and Analysis of Multivariate 
Observations";

 http://www.autonlab.org/tutorials/kmeans.html

Image from www.mathworks.com

http://www.autonlab.org/tutorials/kmeans.html
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Standard k-Center 

 Complete graph, edge 
costs satisfy tri. ineq.

 Minimize worst case 
distance of vertex to 
centroid

 Centroid in data set
 Resources: Vazirani (2003), Approximation 

Alogrithms
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2-Approximation Algorithm

 Best possible 
polynomial time 
approximation: 2

 At least O(n3)
 Resources: Vazirani (2003), Approximation 

Alogrithms

1) Order all edges ei by 
cost

2) Construct graphs Gi 
containing all edges up 
to ei

3) Construct square 
graphs Gi

2

4) Compute maximal 
independent set Mi of 
Gi

2

5) Find smallest i s.t.  
|Mi| <= k, say j

6) Return Mj
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2-Approximation Algorithm

 Square graph contains 
a one-hop connection 
wherever base graph 
had a one- or two-hop 
connection

1) Order all edges ei by 
cost

2) Construct graphs Gi 
containing all edges up 
to ei

3) Construct square 
graphs Gi

2

4) Compute maximal 
independent set Mi of 
Gi

2

5) Find smallest i s.t.  
|Mi| <= k, say j

6) Return Mj
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2-Approximation Algorithm

 Maximal independent set 
 A set S such that every edge of 

the graph has at least one 
endpoint not in S and every 
vertex not in S has at least one 
neighbor in S

 aka independent dominating set

1) Order all edges ei by 
cost

2) Construct graphs Gi 
containing all edges up 
to ei

3) Construct square 
graphs Gi

2

4) Compute maximal 
independent set Mi of 
Gi

2

5) Find smallest i s.t.  
|Mi| <= k, say j

6) Return Mj

Image from en.wikipedia.org
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Lloyd algorithm

 Most commonly used 
heuristic solver
 Nearly synonymous with k-

means
 aka Voronoi iteration
 Over 2,500 hits on G scholar

 Converges quickly to a good 
approximation in practice
 Num iterations often << n

 Many applications
 Poor theoretical bounds

1) Pick initial 
centroids

2) Given centroids, 
compute clusters

3) Given clusters, 
compute new 
centroids

4) Repeat 2 & 3 until 
“convergence” 
(centroids don't 
move very much)
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Lloyd algorithm

 Bad bounds
 Time: super-polynomial in n
 Approximation: can get stuck 

in local minimum
 “Seeding” initial centroids 

very important
 Many complex methods for 

picking initial centroids
 Resources: 

 Lloyd (1957), “Least squares quantization in 
PCM”

 Arthur & Vassilvitskii (2006), "How Slow is the k-
means Method?"

 Arthur & Vassilvitskii (2007), "k-means++ The 
Advantages of Careful Seeding"

1) Pick initial 
centroids

2) Given centroids, 
compute clusters

3) Given clusters, 
compute new 
centroids

4) Repeat 2 & 3 until 
“convergence” 
(centroids don't 
move very much)
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Simulated Annealing

 Lloyd algorithm with added 
randomness
 “Temperature” T controls 

level of randomness
 At high temperature, 

bypasses local minima
 T is decreased on a 

schedule
 Schedule affects result
 Ideal cooling rate cannot be 

pre-computed
 Resources:

 Kirkpatrick, Gelatt and Vecchi (1983), 
“Optimization by Simulated Annealing”

Images from en.wikipedia.org

Fast 
cooling

Slow 
cooling
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Deterministic Annealing

 Not stochastic!
 Fractional ownership of 

vertices based on 
“temperature” T

 T controls centroid greed
 At T = inf, every centroid 

claims every vertex 
equally

 At T = 0, like Lloyd
 Resources:

 Rose (1998), “Deterministic annealing for 
clustering, ...”

High T 
solution

Low T
solution



15

Deterministic Annealing

 Like S.A., at high T D.A. 
bypasses local minima
 Without randomness

 Still requires a 
temperature schedule
 Again, determining an 

ideal schedule is complex
 Depends on topography

High T 
solution

Low T
solution
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Summary: k-Center Variations

k-center k-means

Graph Cont. space Cont. space

Centroids In set Not in set In set

Distance norms Max or 1 2 2

k-medoids

Datapoints in:
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Summary: Solvers

Approx. factor 2 ? ? ?

Running time Long

NA Yes

NA High Low Low

Approx. alg. Lloyd alg. Simulated 
Annealing

Deterministic 
Annealing

Short to very 
long (# iter)*(lloyd) (# iter)*(lloyd)

Stuck in local 
min

No with good 
T schedule

No with good 
T schedule

Seeding 
importance


